Sideway
output.to from Sideway
Draft for Information Only

Content

Algebra
 Hypergeometrical Series
 Sources and References

Algebra

Hypergeometrical Series

1+𝛼⋅𝛽1⋅𝛾π‘₯+𝛼(𝛼+1)𝛽(𝛽+1)1β‹…2⋅𝛾(𝛾+1)π‘₯2+𝛼(𝛼+1)(𝛼+2)𝛽(𝛽+1)(𝛽+2)1β‹…2β‹…3⋅𝛾(𝛾+1)(𝛾+2)π‘₯3+β‹― is convergent if π‘₯ is <1, and divergent if π‘₯>1; by (239 ii.) and if π‘₯=1, the series is convergent if π›Ύβˆ’π›Όβˆ’π›½ is positive, divergent if π›Ύβˆ’π›Όβˆ’π›½ is negative, (239 iv) and divergent if π›Ύβˆ’π›Όβˆ’π›½ is zero (239 v) 291 Let the hypergeometrical series (291) be denoted by 𝐹(𝛼,𝛽,𝛾); then, the series being convergent, it is shewn by induction that 𝐹(𝛼,𝛽+1,𝛾+1)𝐹(𝛼,𝛽,𝛾)=11βˆ’π‘˜11βˆ’π‘˜21βˆ’β‹― concluding with 1βˆ’π‘˜2π‘Ÿβˆ’11βˆ’π‘˜2π‘Ÿπ‘§2π‘Ÿ where π‘˜1, π‘˜2, π‘˜3, β‹― with 𝑧2π‘Ÿ, are given by the formula π‘˜2π‘Ÿβˆ’1=(𝛼+π‘Ÿβˆ’1)(𝛾+π‘Ÿβˆ’1βˆ’π›½)π‘₯(𝛾+2π‘Ÿβˆ’2)(𝛾+2π‘Ÿβˆ’1) π‘˜2π‘Ÿ=(𝛽+π‘Ÿ)(𝛾+π‘Ÿβˆ’π›Ό)π‘₯(𝛾+2π‘Ÿβˆ’1)(𝛾+2π‘Ÿ) 𝑧2π‘Ÿ=𝐹(𝛼+π‘Ÿ,𝛽+π‘Ÿ+1,𝛾+2π‘Ÿ+1)𝐹(𝛼+π‘Ÿ,𝛽+π‘Ÿ,𝛾+2π‘Ÿ) The continued fraction may be concluded at any point with π‘˜2π‘Ÿπ‘§2π‘Ÿ. When π‘Ÿ is infinite, 𝑧2π‘Ÿ=1 and the continued fraction is infinite. 292 Let 𝑓(𝛾)≑1+π‘₯21⋅𝛾+π‘₯41β‹…2⋅𝛾(𝛾+1)+π‘₯61β‹…2β‹…3⋅𝛾(𝛾+1)(𝛾+2)+β‹― the result of substituting π‘₯2𝛼𝛽 for π‘₯ in (291), and making 𝛽=𝛼=∞. Then, by last, or independently by induction, 𝑓(𝛾+1)𝑓(𝛾)=11+𝑝11+𝑝21+β‹― +π‘π‘š1+β‹― with π‘π‘š=π‘₯2(𝛾+π‘šβˆ’1)(𝛾+π‘š) 293 In this result put 𝛾=12 and 𝑦2 for π‘₯, and we obtain by Exp. Th. (150), π‘’π‘¦βˆ’βˆ’π‘¦π‘’π‘¦+βˆ’π‘¦=𝑦1+𝑦23+𝑦25+β‹― the π‘Ÿth component being 𝑦22π‘Ÿβˆ’1. Or the continued fraction may be formed by ordinary division of one series by the other. 294 π‘’π‘šπ‘› is incommensurable, π‘š and 𝑛 being integers. From the last and (174), by putting π‘₯π‘šπ‘›. 295

Sources and References

https://archive.org/details/synopsis-of-elementary-results-in-pure-and-applied-mathematics-pdfdrive

Β©sideway

ID: 210600027 Last Updated: 6/27/2021 Revision: 0 Ref:

close

References

  1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science &amp; Engineering
  2. Wheatstone, C., 1854, On the Formation of Powers from Arithmetical Progressions
  3. Stroud, K.A., 2001, Engineering Mathematics
  4. Coolidge, J.L., 1949, The Story of The Binomial Theorem
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Travel 9

Reference 79

Computer

Hardware 251

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 431

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Set 1

Logic 1

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2025 Sideway . All rights reserved Disclaimers last modified on 06 September 2019