Logarithm TheoremPythagorean TheoremCombinatoricsQuadratic EquationsSequence and SeriesLinear AlgebraDiophantine Equation Draft for Information Only
Content Pythagorean Triples
Pythagorean TriplesDiophantine equation → Rational solutions. Pythagorean theorem 𝑎2+𝑏2=𝑐2 3 variables with integer solutions of Pythagorean triples.Arithmetric ApproachExample 32+42=52From Pythagorean theorem 𝑥2+𝑦2=𝑧232+42=52⇒𝑥2+𝑦2=𝑧2=(𝑦+1)2
Since right hand side is odd, therefore 𝑥 must be odd.
Let 𝑥=2𝑘+1⇒𝑥2=(2𝑘+1)2=4𝑘2+4𝑘+1=2𝑦+1⇒2𝑘(𝑘+1)=𝑦
Example 62+82=102From Pythagorean theorem 𝑥2+𝑦2=𝑧262+82=102⇒𝑥2+𝑦2=𝑧2=(𝑦+2)2
Since right hand side is even, therefore 𝑥 must be even.
Let 𝑥=2𝑙⇒𝑥2=(2𝑙)2=4𝑙2=4(𝑦+1)⇒𝑙2−1=𝑦
General Case: 𝑐=𝑏+𝑠Goal: {𝑥2+𝑦2=𝑧2}={𝑥=𝑥(param),𝑦=𝑦(param),𝑧=𝑧(param)}cases and reduction: primitive solutions if Let 𝑃(𝑥0,𝑦0,𝑧0) be a primitive solution.
Check
𝑥0=2𝑢𝑣
Source and Referencehttps://www.youtube.com/watch?v=bTenb0VPa3Ahttps://www.youtube.com/watch?v=4D9ttfBNIJI https://www.youtube.com/watch?v=eRXWpWgP0dQ ©sideway ID: 201100014 Last Updated: 11/14/2020 Revision: 0 Ref: References
Latest Updated Links
|
Home 5 Business Management HBR 3 Information Recreation Hobbies 8 Culture Chinese 1097 English 339 Travel 9 Reference 79 Computer Hardware 251 Software Application 213 Digitization 32 Latex 52 Manim 205 KB 1 Numeric 19 Programming Web 289 Unicode 504 HTML 66 CSS 65 SVG 46 ASP.NET 270 OS 431 DeskTop 7 Python 72 Knowledge Mathematics Formulas 8 Set 1 Logic 1 Algebra 84 Number Theory 206 Trigonometry 31 Geometry 34 Calculus 67 Engineering Tables 8 Mechanical Rigid Bodies Statics 92 Dynamics 37 Fluid 5 Control Acoustics 19 Natural Sciences Matter 1 Electric 27 Biology 1 |
Copyright © 2000-2025 Sideway . All rights reserved Disclaimers last modified on 06 September 2019