Sideway
output.to from Sideway
Finite Element

1D Element in 1D Frame1D Element in 2D Frame

Draft for Information Only

Content

 Finite Element Analysis
  One Dimensional Linear Element: Strain and Stress Approach
  One Dimensional Linear Element: Example of a 2 elements system
  One Dimensional Linear Element: Energy Approach
  Strain Energy
  Displacement Function
  Total Potential Energy
  Principle of Minimum Total Potential Energy

Finite Element Analysis

One dimensional linear element can be used to analysis structural pin jointed problems.

One Dimensional Linear Element: Strain and Stress Approach

 IMAGE...

Considering a bar, of length L and cross sectional area A, is subjected to a axial spring loads. Let forces at 1 and 2 are equal to F1 and F2 and the displacements of the bar due to the applied load F is u1 and u2 respectively.  Assuming the material of the bar is linear elastic, then the stress-strain relationships of the bar is equal to

 IMAGE...

Stress is defined as the average force per unit area. That is

 IMAGE...

Young's modulus, E or the elastic modulus, is a numerical value to describes the elastic properties of the material undergoing elastic deformation. The unit of Young's modulus is also Nm-2 since strain does not have any unit. Strain is defined as the ratio of total deformation over the original dimension of the bar. That is

 IMAGE...

Subsitute equations of stress and strain into the stress-strain relationships of the bar, and a force-deformation relationship expressed in terms of force and displacement is obtained.

 IMAGE...

When considering the bar as an individual object, forces, F1 and F2 at both ends of the bar can be expressed analytically as following by assuming a fixed end opposite to the interested force with one consistent coordinate system.      

 IMAGE...

The bar can also considered as an element of the system, in which both forces F1 and F2 and displacement u1 and u2 are expressed as one individual element. This can be done by expressing the two force equations in matrix form as  

 IMAGE...

And expressed concisely in an element-wise matrix form which can be used in numerical method as   

 IMAGE...

One Dimensional Linear Element: Example of a 2 elements system

Consider a simple system with 2 elements of same material of Young's modulus E, length L and area A. Two elements are connected by a hinge, with one end of element 1 is fixed to a wall, while one end of element 2 is under an applied load F.    

 IMAGE...

Using the standard coordinate system, the force-displacement equations for elements 1 and 2 are

 IMAGE...

The two force-displacement equations for elements are only elemental equations of the 2 element sytem. Numerically, the force-displacement equations can be combined together to form a bigger system matrix form.

 IMAGE...

As node 2 is a common point for force F2,1 and F2,2, forces acting on node 2 can further be combined by assembling or grouping the two related force and displacement equations into one equation only. The global matrix form can be reduced to have equations for 3 nodes only. 

 IMAGE...

The 3 equations are used to represent the mechanical properties at the 3 nodes. In other words, the magnitudes of force and displacement global element matrix are bounded by the mechanical properties of the physical system. At node 1, the displacement u1 is equal to zero, and the reaction force F1,1 is unknown and is equal to the total reaction force F1 at node 1. At node 2, the displacement u2 is unknown, and the resultant force F2,1+F2,2 is equal to zero since the total reaction force F2 at node 2 is in equilibrium. At node 3,  the displacement u3 is unknown, and the resultant force F3,2 is equal to the applied load F, the total reaction force F3 at node 3.  That is

 IMAGE...

Since there are three force and displacement equations and three unknown, the force and displacement equations can solved.

 IMAGE...

One Dimensional Linear Element: Energy Approach

 IMAGE...

Strain Energy

The force analytical approach to derive the element stiffness matrix gives an fundamental idea on the numerical method in finite element analysis. An energy approach is an alternative way to derive  the element stiffness matrix. The elastic deformation of the bar under applied load reacts like a mechanical spring, strain energy is stored by the system when undergoing deformation. The strain energy, U, per unit volume is equal to

 IMAGE...

Since displacement is a function of x, local x, along x direction, strain energy for the bar of length L with constant sectional area is equal to

 IMAGE...

Displacement Function

For a two-node linear element, the linear displacement function can be assumed to be a linear function of x.  That is

 IMAGE...

Similar to other boundary problems, this trial displacement function for the bar must satisfy the boundary displacement conditions at two nodes. That is 

 IMAGE...

The displacement function is therefore equal to 

 IMAGE...

The displacement function can therefore be used to describe the displacement of each particle along the bar. The functions that used to multiply the nodal displacements u1 and u2 are therefore called shape functions or interpolation functions. The differentiation of the displacement function is equal to

 IMAGE...

Total Potential Energy

The total strain energy stored in the bar element is therefore equal to

 IMAGE...

Work done is defined as the applied force times the travelled distance along the direction of the applied force. That is 

 IMAGE...

Work potential is defined as the negative of the work done by the external forces acting on the structure. Since the deformed state of the bar element attained upon the application of applied loads is in the equilibrium state, the total potential energy (TPE) or potential energy (PE) of the bar element is defined as the sum of the strain energy (SE) and the work potential (WP). That is

 IMAGE...

Principle of Minimum Total Potential Energy

The total potential energy (TPE) equation provides a relationship between the applied forces and displacements of element nodes. The deformation due to the applied forces are in static equilibrium. From the principle of minimum total potential energy, a conservative system is in equilibrium if the total potential energy of the system is stationary. The principle implies that the conservative system will only attain a unique deformation at an equilibrium point to achieve the equilibrium state with respect to the independent variables for the given forces. The unique deformation corresponds to the extreme value of the minimum total potential energy, the equilibrium of the system is stable if the total potential energy of the conservative system is a minimum. Since the external applied forces is the only external source of energy included in the total potential, the virtual infinitesimal change in total potential with respect to a virtual infinitesimal change of the independent variable corresponding to an infinitesimal physical change of the conservative system should be equal to zero. That is

 IMAGE...

Similarly, the bar can also considered as an element of the system, in which both forces F1 and F2 and displacement u1 and u2 are expressed as one individual element. This can be done by expressing the two force equations in matrix form as the force analysis approach before. That is 

 IMAGE...


©sideway

ID: 140600016 Last Updated: 6/28/2014 Revision: 0 Ref:

close

References

  1. Paulo Ribenboim, 2000, My Numbers, My Friends: Popular Lectures on Number Theory
  2. Kenneth H. Rosen, 2012, Discrete Mathematics and Its_Applications
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339new

Travel 7new

Reference 79

Computer

Hardware 251

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 431

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Set 1

Logic 1

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019