Sideway
output.to from Sideway
Draft for Information Only

Content

Algebra
 Highest Common Factor
  Example
  Evolution
 Lowest Common Multiple
  Example
 Evolution
  Square Root
  Cube Root
 Sources and References

Algebra

Highest Common Factor

Rule: To find the highest common factor of two expressions: Divide the one which is of the highest dimension by the other, rejecting first any factor of either expression which is not also a factor of the other. Operate in the same manner upon the remainder and the divisor, and continue the process until there is no remainder. The last divisor will be the highest common factor required.

Example

to find the H.C.F. of 3𝑥5−10𝑥3+15𝑥+8 and 𝑥5−2𝑥4−6𝑥3−4𝑥2+13𝑥+6.
𝑥 |  5  4  3  2  1  0 |  5 4  3  2  1  0 | 
- | ----------------- | ---------------- | --
  |  1− 2− 6+ 4+13+ 6 |  3+0−10+ 0+15+ 8 |  3
  |  3× | −3+6−18−12−39−18 | 
  | ----------------- | ---------------- | 
𝑥 |  3− 6−18+12+39+18 |  2)6+ 8−12−24−10 | 
  | −3− 4+ 6+12+ 5 |    3+ 4− 6−12− 5 | 
  | ----------------- |   | 
  |  2)−10−12+24+44+18 |   | 
  |    − 5− 6+12+22+ 9 |   | 
  |      3 |   | 
  | ----------------- |   | 
5 |    −15−18+36+66+27 |   | 
  |    +15+20−30−60−25 |   | 
  | ----------------- | ---------------- | 
  |      2) 2+ 6+ 6+ 2 |    3+ 4− 6−12− 5 | 3𝑥
  |         1+ 3+ 3+ 1 |   −3− 9− 9− 3 | 
  |   | ---------------- | 
  |   |     − 5−15−15− 5 | −5
  |   |     + 5+15+15+ 5 | 
  |   | ---------------- | 

Evolution

Otherwise: To form the H.C.F. of two or more algebraical expressions: Separate the expressions into their simplest factors. The H.C.F. will be the product of the factors common to all the expressions, taken in the lowest powers that occur.

Lowest Common Multiple

The L.C.M. of two quantities is equal to their product divided by the H.C.F. Otherwsise.: To form the L.C.M. of two or more algebraical expressions: Separate them into their simplest factors. The L.C.M. will be the product of all the factors that occur, taken in the highest powers that occur.

Example

The H.C.F. of 𝑎2(𝑏−𝑥)5𝑐7𝑑 and 𝑎3(𝑏−𝑥)2𝑐4𝑒 is 𝑎2(𝑏−𝑥)2𝑐4; the L.C.M. is 𝑎3(𝑏−𝑥)5𝑐7𝑑𝑒

Evolution

Square Root

To extract the Square Root of 𝑎23𝑎√𝑎23√𝑎2+41𝑎16+1 16𝑎2−24𝑎32+41𝑎−24𝑎12+1616 Detaching the coefficients, the work is as follows:
𝑎 |   2  32  1 12 0 12 0
        ----- | --------------
          |  16−24+41−24+16 ( 4-3+4
        4 | −16
          | --------------
        2×4 |    −24+41
        8-3 |     24− 9
          | --------------
        8-2×3 |       32−24+16
        8-6+4 |      −32+24−16
⇒root: 4𝑎−3𝑎1/2+44=𝑎−34√𝑎+1

Cube Root

To extract the Cube Root of 8𝑥6−36𝑥5√𝑦+66𝑥4𝑦−63𝑥3𝑦√𝑦+33𝑥2𝑦2−9𝑥𝑦2√𝑦+𝑦3 The terms here contain the successive powers of 𝑥 and √𝑦; therefore, detaching the coefficients, the work will be as follow:
4 3 |2 1 0|4 3 2 1 0| 6  5  4  3  2 1 0|2 1 0
        ---|-----|---------|------------------
         | | | 8−36+66−63+33−9+1(2−3+1
        22|3×2|3×22|−82
         | | |------------------
         | | |  −36+66−63+33−9+1
        3×22|3×2−3|3×22−3×2(3)+(−3)2|  +36−3
         | | |------------------
         | | |     +66−63+33−9+1
         | |0−18+9|     −54+27
         | | |------------------
         | | |     +12−36+33−9+1
        3×22|3×2(1)−3×3(1)+12|0−2x3×2(3)+3×(−3)2|     −121
         | | |------------------
         | | |        −36+33−9+1
         | |0−36+27|        +36−27
         |6−9+1| |           −06+9−1
⇒root:2𝑥2−3𝑥√𝑦+𝑦 The foregoing process is but a slight variation of Horner's rule for solving an equation of any degree

Sources and References

https://archive.org/details/synopsis-of-elementary-results-in-pure-and-applied-mathematics-pdfdrive

©sideway

ID: 210500031 Last Updated: 5/31/2021 Revision: 0 Ref:

close

References

  1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science & Engineering
  2. Wheatstone, C., 1854, On the Formation of Powers from Arithmetical Progressions
  3. Stroud, K.A., 2001, Engineering Mathematics
  4. Coolidge, J.L., 1949, The Story of The Binomial Theorem
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Travel 9

Reference 79

Computer

Hardware 251

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 431

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Set 1

Logic 1

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2025 Sideway . All rights reserved Disclaimers last modified on 06 September 2019